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Benthic Foraminifera and Ostracoda from Virginia Continental

Shelf

Introduction

Benthic meiolaunas living on continental shelves comprise a significant proportion
of the total biomass and species diversity in shallow marine environments and play
important roles in shallow marine ecosystem functioning. Two important meiofaunal
groups, benthic foraminifers (protists) and ostracodes (bivalved Crustacca), have been
especially important in studies of benthic communities living along the U.S. Atlantic
continental shelf. Buzas and Culver (1980) estimated that the number of benthic
foraminifers in marine environments execeds 10 © per square meter and wet-weight
biomass ranges from 0.02 to more than 10 g/m*. Numerous other studies have
documented the zoogeographic and bathymetric distribution of more than 800 species of
benthic foraminifera (e.g., Culver and Buzas 1980; Buzas and Culver 1980) and several
hundred species of marine ostracodes (Valentine 1971; Hazel 1970, 1975; Cronin 1983)
along the U.S. Atlantic coast.

Most previous studies of Atlantic continental shelf foraminifers and ostracodes,
however, were conducted at very large spatial and temporal scales. For example, the large
USGS/Woods Hole Continental Margin Program which took thousands of Atlantic shelf
and slope sediment samples during the 1960’s (Emery 1968) provided extensive ostracode
zoogeographic data spanning several marine zoogeographic provinces and climatic zones
(e.g. Hazel 1970). Likewise, Culver and Buzas (1980) compiled foraminiferal species’
distribution data from hundreds of published sources to produce distribution maps of the
150 most common species for the western North Atlantic Ocean. Prior studies of fossil
benthic foraminifers and ostracodes of the Atlantic margin have also focused on long-term

changes in microfaunal assemblages resulting from glacial-interglacial climatic cycles



(Hazel 1968; Cronin 1988) and from community evolution over millions of years (Buzas
and Culver 1984, 1989). |

While these studies of living and fossil foraminifers and ostracodes provide
excellent baseline information, they are insufficient to understand the small scale
distribution of species within a limited region of the continental shelf, nor to understand
short-term variability in meiobenthic populations. Such information is essential in the
evaluation of potential impacts of short-term environmental disturbances from sand mining,
pollution and nutrient influx or high-frequency climatic variability on continental shelf
ecosystems.

Our main goal in the present study is to provide baseline information on the
abundance and species diversity of foraminifers and ostracodes living in three potential
sand mining areas off Virginia Beach. This study was carried out in collaboration with the
Virginia Institute of Marine Science, College of William and Mary, in support of the
Minerals Management Service program to understand environmental aspects of potential

sand mining off the city of Virginia Beach, Virginia.

Study Area

The study region is located in the warm temperate marine climatic zone of the
western North Atl.antic Ocean between about 36.7 to 37.91 ° N and 75.85t0 75.92 ° W.
(Figure 1). The oceanography of the region is dominated by the cool, sonthward flowing
Virginia Coastal Current and the warmer, northward-flowing Gulf Stream/Florida Current.
These currents converge near Cape Hatteras where strong isothermal convergence creates

thermal barriers to the poleward and equatorward distribution of thermophilic (warm water)

and cryophilic (cool water) species respectively. Off southeastern Virginia, the coldest

bottom waters usually occur during February and range from about 5 to 10 °C, with

generally cooler temperatures closer to shore. The warmest temperatures occur in August-



/
Q@
S
Atlantic
Ocean
Norfolk\ Study Area
£
(=]
o
o
N
o]
\ '
(2]
'53;@‘
Cape
4’%@ Hatteras
\/w’ —
0 50
l 1
Kilometers

Figure 1: Map showing general location of the Virginia shelf study area.



September when they reach > 25 °C, decreasing offshore to 17-20 °C in the middle shelf

region (Walford and Wicklund 1968).

On the geographic scale of faunal provinces, winter and/or summer bottom water
temperatures are dominant factors influencing the large-scale latitudinal distribution of
ostracodc and foraminiferal species on continental shelves (Hazel 1970). The Virginia shelf
is located just north of the major zoogeographic boundary near the Cape Hatteras region.
The benthic fauna off southeastern Virginia is composed mainly of temperate species
common in regions north of Cape Hatteras. Many species living on the Virginia shelf are
near the southernmost limit of their latitudinal distribution because either they cannot
tolerate warmer water temperatures to the south or they require cooler winter temperatures
for survival and/or reproduction (Hazel 1970).

As one moves from nearshore to offshore regions of the Atlantic margin (from the
continental shelf to the slope), factors such as dissolved oxygen, light penetration,
sediment texture and composition, and decreasing temperatures of the thermocline affect the
distribution of species. For example, environmental gradients at the shelf/slope transition
result in 2 major bathymetric turnover of benthic ostracode (Cronin 1983) and foraminiferal
species (Culver and Buzas 1983) between 150-500 m water depth. All the samples in the
present study came from the mid- to inner continental shelf and the studied fauna is not
affected by the thermocline or by hypoxia.

Suhstrate is another important factor in the small-scale distribution of benthic
foraminifers and o.stracodes. Buzas et al. (1989), for example, conducted experiments with
benthic foraminifers and showed a small amount of mud in a sandy benthic habitat can have
important affects on benthic foraminiferal densities. Many ostracode species are also |
substrate-specific in nearshore and estuarine habitats (Cronin 1979). The shelf off
southeastern Virginia is mainly composed of sands (Hollister 1973) and provides an ideal

substrate for sand-dwelling taxa.



Methods

Surface sediment samples were collected on May 15 and June 5-6, 1996 (Spring
samples) and October 21 and November 6, 1996 (Fall samples) from the VIMS R/V Bay
Eagle. Collections were made from three regions which are referred to here as the
northern, central and southern regions. There are no obvious barriers between or
environmental differences among the three regions. All three are characterized by sandy
substrates and generally similar temperature and salinity regimes. TFigures 2-11 show
sample stations; Appendices 1-3 give the latitude and longitude for each station.
Additional information about the cruises can be found in the companion report by Cutter
and Diaz (1998)
Samples were obtained using a Smith/MclIntyre grab sampler. Surface sediment from the
uppermost 1-2 cm was scraped from a 10 by 10 cm area within the grab sample and placed
in plastic samplc bags. The scdiment samples were immediately stained shipboard with
Rose Bengal to help distinguish between living and dead ostracodes and foraminifera (see
Walton 1952).

Surface sediment samples were processed for foraminifera and ostracodes using

standard procedures. The sediments were washed through a 63 pm sieve and dried at 50

°C at VIMS laboratories. A total of 300 benthic foraminifers were picked from the residues

when available. Samples yielding fewer than 300 specimens were picked of all the
foraminifera present. All the samples in Appendices 1 and 2 contained stained
representatives and we assume the populations represented at each site were living close to
the time of collection. A total of 20 foraminiferal species were found.

Ostracodes were picked at the same time as foraminifers from the same quantity of
sediment needed to obtain 300 foraminifers (time constraints did not allow us to pick the
entire sample). Ostracodes occurred in most samples; they are typically less abundant than

foraminifers in sandy substrates such as those of the Virginia shelf (the number of



ostracodes specimens ranged from 0 1o 36 per safnple) compared to finer grained
substrates of Atlantic estuaries and offshore coﬁtinentél slope regions.

A total of 31 ostracode speéies were found in the Virginia sandy shelf habitats.
Many individual ostracodes (especially P. edwardsi, P. bradyi, C. seminuda, and
Bensonocythere) were preserved as whole carapaces containing chitinous appendages and
other “softparts”. These specimens stained vivid pink and clearly were living at the time of
collection. Other specimens, notably juvenile valves, stained faint pink in color and very
likely represent the molt stages of living populations.

Foraminifera and ostracodes were examined under light and electron microscopes at
the U.S. Geological Survey in Reston Virginia. Specimens were identified to species level
using USGS reference collections, following the taxonomy of Culver and Buzas (1980)
and Loeblich and Tappan (1988) for foraminifers and Valentine (1971), Hazel (1975,
1983), and Cronin (1290) for ostracodes. The faunal slides containing foraminiferal and
ostracodes are housed in the USGS microfaunal reference collections, Reston, Virginia

20191.

Results

The foraminiferal and ostracode species census data are given in Appendices 1-3
and are available electronically from the authors (tcronin@usgs.gov). Figures 2-11 plot the
distribution of more common species of foraminifera and ostracodes; Plates 1-5 illustrate

most of the identified species with scanning electron photomicrographs.

Ostracodes
A total of 31 species of ostracode was found in the study area. The ostracode
assemblage is dominated by Peratocytheridea bradyi, Hulingsina spp., Cushmanidea

seminuda, and Protocytheretta edwardsi. These species are typical inhabitants of sandy
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Figure 2: Distribution map showing the proportions of Elphidium excavatum selsevense in total formaminiferal
population on the continental shelf off Virginia Beach during Spring (upper map) and Fall (lower map) 1996.
Small dots indicate station locations,
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Figure 3. Distribution map showing the proportions of Elphidium excavatum clavata in total formaminiferal
population on the continental shelf off Virginia Beach during Spring (upper map) and Fall (lower map) 1996.
Small dots indicate station locations.
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Figure 4: Distribution map showing the proportions of Ammonia parkinsoniana in total formaminiteral
population on the continental shelf off Virginia Beach during Spring (upper map) and Fall (lower map) 1996.
Small dots indicate station locations.
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Figure 5; Distribution map showing proportions of Quingueloculina seminulum in total formaminiferal
population on the continental shelf off Virginia Beach during Spring (upper map) and Fall (lower map) 1996.
Small dots indicate station locations.



reratcoyihseridea bradii
Sprng 1286

3

Peratocytheridea bradii
Fall 1996

sikn
Faiing} txi
Suiface fiom Fa.cztilx

W h b Lo ks

- TR T T

L L

;
o

Figure 6: Distribution map showing number of Peratocytheridea bradyi specimens on the conl:*incntal s_helf off
Virginia Beach during Spring (upper map) and Fall (lower map) 1996. Small dots indicate station locations.
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Figure 7:  Distribution map showing number of Cushmanidea seminuda specimens on the continental shelf off
Virginia Beach during Spring (upper map) and Fall (lower map) 1996. Small dots indicate station locations.
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Figure 8: Distribution map showing number of Hulingsina rugipustulosa specimens on the continental shelf off
Virginia Beach during Spring (upper map) and Fall (lower map) 1996. Small dots indicate station locations.
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Figure 9: Distribution map showing number of Loxoconcha williamsi specimens on the continental shelf off
Virginia Beach during Spring (upper map) and Fall (lower map) 1996. Small dots indicate station locations,
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Figure 10: Distribution map showing number of Protocytheretta edwardsi specimens on the continental shelf off
Virginia Beach during Spring. Small dots indicate station locations.
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inner continental shelf environments of the temperate marine climatic zone of the Atlantic
margin off the eastern United States.

The total species number and the composition of the ostracode assemblage is
remarkably similar to that collected 30-35 years ago during the USGS-Woods Hole
Oceanographic Institution (WHOI) Continental Margin Program (Emery 1966). A
comparison between the assemblage found at station 43 of Valentine (1971) located near
the current study area with our total 1996 assemblage indicates that Valentine found the
same 31 species at this site in the 1960’s sample found in the current study. These results
leads to a fundamental conclusion from the current study that there has not been a long-term
change in the overall ostracode assemblage at this site.

Although the overall ostracode faunal assemblage has not seen any net change over
the past 30 years, we discovered important heretofore undiscovered seasonal and onshore-
offshore variability in ostracode distributions revealed from the 1996 sampling program

(Figures 6-11). Among the highlights:

o Several key ostracode species (L. williamsi, H. rugipustulosa, C. seminuda) have a
more limited distribution in the Spring than in the Fall, suggesting there is a seasonal

migration into new habitats during the Summer and early Fall months.

e The pattern of Summer/Fall range expansion may be related to the predominant
southward direction to bottom drift of this region which may also be related to the
prominent sand-swell crests in many regions of the mid-Atlantic shelf (Uchupi 1968;

Hollister 1973).

e Several other species contfact their range between the Spring and the Fall seasons.
Peratocytheridea bradyi contracts its range from the northern and southern regions fo
only the southern region in the Fall. Hulingsina americana and Protocytheretta edwardsi
are present in northern/central and northern/southern regions in the Spring,

respectively, but they are almost totally absent from all samples taken in the Fall.
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e The Virginia continental shelf contains several species encountered in sediments
deposited over the past 1000 years in Chesapeake Bay. The shelf seems to serve as a
source area for ostracodes species which periodically inhabit the more saline southern
part and the deeper channel of Chesapeake Bay especially during periods when river

discharge is reduced (Cronin unpublished data).

These results provide strong evidence that ostracode species have distinct
population ecology linked to seasonal variability of the continental shelf. Major seasonal
.changes in ostracode populations have also been documented in estuarine ostracodes in the
Patuxent River (Tressler and Smith 1948) and in Sippewisset Marsh, Cape Cod
(Schweitzer and Lohman 1990) but unti! this time, were unknown for shelf species. We
believe the southeastern Virginia 1996 data is the first to document such seasonality in
Atlantic shelf marine ostracode distributions. Although additional analj/ses are merited to
further document seasonal trends, we suspect that seasonal variability is related to bottom
water currents. Southward flowing currents are considered especially important in

affecting the distribution of L. williamsi, H. rugipustulosa, C. seminuda.

Benthic Foraminifera

A total of 20 species were identified from the surficial sediment samples. The
dominant genus is Elphidium, a genus that includes several species common in nearshore
environments of the North Atlantic Ocean. Elphidium is represented by three subspecies of
E. excavatum (these are sometimes referred to separate species or distinct morphotypes of
the same species): Elphidium excavatum clavata, E. excavatum selseyensis, and E.
excavatum excavata. Figures 2 and 3 show the distributions of E. excavatum selseyense,
the most abundant species found in our study, and E. excavatum clavata during Spring and

Fall 1996.
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Elphidi'um excavatum selseyensis is the dominant benthic foraminifer on the
Virginia Beach continental éhelf comprising up to 93% of the assemblage. The Spring
distribution of E. selseyensis shows it comprises greater than 80% of the assemblage in
northern and central areas, and 70% to 80% of the assemblage in the southern region. The
distribution of E. selseyensis in the fall is reduced with a greater than 80% occurrence in
the northern and central areas, and 60% to 80% in the southern area and the southern part
of the central area.

Elphidium excavatum clavata is the dominant benthic foraminifer in the northern
and southern areas. It makes up a much smaller percentage (< 8%) of the assemblage in
the central area, This species expands to significant proportions in the fall where it
composes greater than 8% (sometimes exceeding 16%) in much of the central and southern
regions.

The occurrence off southcastern Virginia of thesc forms of the genus Elphidium is
consistent with benthic foraminifer distributions reported from the mid-Atlantic continental
shelf of North America. Murray (1991) and Culver and Buzas (1980), for example,
mapped the Elphidium predominance from Cape Cod to Cape Hatteras and off the North
American Atlantic coast, respectively. Schnitker (1971) also abundant Elphidium clavatum
north of Cape Hatteras on the inner shelf.

Other species occurring on the Virginia shelf, in order of abundance, include
Quinqueloculina seminula, Ammonia parkinsoniana, Buccella frigida, Hanzawaia
atlanﬁcus, Hanzawaia concentrica and Eggerella advena. Figures 4 and 5 show the
distribution of A, parkinsoniana and Q. seminulum during Spring and Fall, 1996; plates 4
and 5 illustrate most of these species.

Although the relative abundances of Ammonia parkinsoniana in the Virginia Beach
shelf samples are low, 5% or less, the distribution of this species seems to reflect distinct
environmental conditions in the central study area. A. parkinsoniana is common

throughout the world in estuarine environments due to its tolerance of highly fluctuating
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salinities krangi'ng from brackish (dligohaline, 0.5-5 ppt} to hypersaline (>40 ppt). It lives
on the surface of fine-grained sediments down to a depth of 10 cm into the substrate and

~ has a complex life history involving bacterial and algal endosymbionts (Goldstein and
Moodley 1993). Chandler e al. (1996) found that Ammonia would only reproduce in
culture under specific conditions that included the addition of silty-clay obtained from the
Gulf of Mexico and a regular diet of phytoplankton.

The Spring distribution ol A. parkinsoniuna shows its greatest abundance in the
southern part of the central area with only sparse occurrences in northern and southern
regions. The fall distribution of A. parkinsoniana shows a slight expansion into the
northern and western sections of the central area 2 but it is still rare to absent in northern
and southern regions. Tt is unlikely that salinity variations restricted A. parkinsoniana from
inhabiting northern and southern regions. Rather, we suspect that its limited range has
more to do with resource limitations such as the availability of food, nutricnts and/or finer
grained sediments which may be available in the central region.

Quinqueloculina seminula is the dominant miliolid foraminifer that occurs in our
surficial samplcs. It is present in percentages ranging from 5-10% to 20-25% in the central
and southern regions in the Spring. However, its distribution changes in Fall when it
expands into the northern region but disappears in parts of the central region. In the Fall its

abundance is greatly reduced to <2 %.

- Conclusions

The modern benthic foraminiferal and ostracode faunas from three areas on the
Virginia Beach continental shelf allow several important new conclusions about the
meiobenthic fauna of sandy substrate environments of the continental shelf off Virginia

Beach, Virginia.
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o The 1996 faunal assemblages are extremely similar in species composition to those
obtained in previous sampling program of the North American Atlantic continental shelf .
conducted during the 1960’s. There has been no major long-term changes in the faunas

from these regions.

» Seasonal benthic foraminiferal and ostracode distribution data show that significant
changes in the relative abundance of the dominant species characterize the Spring and
Fall assemblages. Several ostracode species expand their range southward from Spring
to Fall suggesting bottom drift currents may play a role in seasonal dispersal of
populations. Other ostracode species are common in the Spring but are almost totally

absent in the Fall reflecting a complex, still poorly known population ecology.

e Foraminiferal species richness and geographic distributions arc slightly grcater in the
fall with the expansion of the species E. clavata, A. parkinsoniana, and Q. seminula,

and reduction in spatial distribution of E. selseyensis.

e Ammonia parkinsoniana has a distinct range limited to the central study region,

possibly due to food and/or substrate limitations.

e The Virginia shelf is an important source habitat for species migrating into Chesapeake
Bay. Two examples are the ostracode species, Loxoconcha williamsi and
Protocytheretta edwardsi, which occur commonly on the Virginia shelf and have also
been discovered in sediments in Chesapeake deposited prior to large-scale land clearing
of the early 19" century.

Overall, our preliminary results indicate that a complex meiobenthic community
inhabits the southeastern Virginia shelf. It is very likely that the entire community is
potentially sensitive to environmental disruption to surficial sediments. However, due to
the variable ecological requirements of each foraminiferal and ostracode species, the impact

of habitat disturbance will vary widely among the 50 or so species recovered.
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Furthermore, whereas the Virginia shelf is itself important habitat for meiobenthic
species, this region must also be considered an important source area region for species
able to migrate into coastal estuaries and bays like Chesapeake Bay. Consequently,
species’ population dynamics in the shelf region must be examined in the context of
seasonal monitoring of conspecific populations living in adjacent areas.

Additional benthic sampling of the Virginia shelf through a second seasonal cycle,
new sampling of the Virginia shell/Chesapeake Bay mouth transition, supplemented by
physical and chemical oceanographic data, would provide an ideal platform from which to
fully understand shallow marine foraminiferal and ostracode species ecology and determine

the least disruptive way to mine sand from shelf regions.
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Scanning Electron Microscope Plates of Virginia Shelf Ostracodes and
Foraminifera

Plate 1

Figure 1: Bensonocythersapeloensigiall 1965. x 134, Sta. 64, Cell 308, female, left
valve.

Figure 2: Bensonocythere sapeloenbiall 1965. x 133, Sta. 62, Cell 316, female, right
valve, internal view.

Figure 3: Bensonocythere sapeloenbiall 1965. x 141, Sta. 1, Cell 209, male, left
valve.

Figure 4: Puriana rugipunctatgUlrich and Bassler 1904) x 143, Sta. 55, Cell 264,
female, right valve.

Figure 5: Muellerina ohmertHazel 1983, x 178, Sta. 52, Cell 52, female, left valve.

Figure 6: Protocytheretta edward¢Cushman 1906)., x 83,4, Sta. 64, Cell 64, female,
right valve.

Figure 7: Cytherettid x 71,3, Sta. 62, Cell 316, female, left valve, internal view.

Figure 8:Protocytheretta edward¢Cushman 1906, x 91,7, Sta. 204, Cell 204, female,
left valve, internal view.

21






Plate 2

Figure 1: Hulingsina americangCushman 1906). x 88,1, Sta. 64, Cell 308, female?,
left valve.

Figure 2: Cushmanidea seminud@€ushman 1906). x 94,2 , Sta. R2, Cell 185, female,
right valve.

Figure 3: Sahnia sp. x 141, Sta. 24, Cell 234, male, left valve.

Figure 4: Hulingsina rugipustulosgdEdwards 1944) x 147, Sta. 46, Cell 46, female,
right valve.

Figure 5: Peratocytheridea brady{iStephenson 1938). x 139, Sta. 52, Cell 213, female,
left valve, internal view.

Figure 6 Peratocytheridea bradyiStephenson 1938). x 124, Sta. 209, Cell 209, female,
left valve.

Figure 7: Peratocytheridea bradyiStephenson 1938). x 134, Sta. 51, Cell 204, female,
left valve, Note hole in middle where predator bored through carapace.

Figure 8: Eucythere declivigNorman 1865). x 151, Sta. R11, Cell 49, female?, left
valve, soft parts.
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Plate 3

Figure 1: Tetracytherurasp. A of Valentine 1971, x 166, Sta. R11, Cell 49, male, left
valve.

Figure 2: Tetracytherurasp. A of Valentine 1971, x 166, Sta. 64, Cell 308, left valve,
internal view.

Figure 3: Cytherurasp, x 167, Sta. 64, Cell 64, female, left valve.
Figure 4: Cytherurasp. x 307, Sta. 53, Cell 365, left valve.

Figure 5: Proteoconchduberculata (Puri 1960). x 104, Sta. 54, Cell 263, male, right
valve.

Figure 6: Proteoconchduberculata (Puri 1960). x 121, Sta. 53, Cell 246, female?, left
valve, internal view.

Figure 7: Loxoconcha williamsi (=aff granulataSars 186h x 151, Sta. R10, Cell 66,
female, left valve.

Figure 8: CytherurawardensisHowe and Brown 1935. x 176, Sta. 229, Cell 229,
female, left valve.

Figure 9: Microcytheresp, x 280, Sta. 53, Cell 365, lateral view.

Figure 10: Microcytheresp x 307, Sta. 53, Cell 365, dorsal view.
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Plate 4

Figure 1: Elphidium clavatax 191, Sta. 52, Cell 213.

Figure 2: E. selseyensisx 164, Sta. 57, Cell 372.

Figure 3: Quinqueloculina seminulumx 122, Sta. 54, Cell 332.
Figure 4. E. clavatax 176, Sta. 57, Cell 372.

Figure 5: E. selseyensix 178, Sta. R11, Cell 49, aperture L.
Figure 6: Hanzawaia concentricax 147, Sta. R9, Cell 104.

Figure 7: Ammonia parkinsoniana 176, Sta. R2, Cell 185, spiral side.
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Plate 5

Figure 1: Buccella frigida x 217, Sta. 57, Cell 372, umbilical view.

Figure 2: Ammonia parkinsoniana 181, Sta. R14, Cell 24, umbilical view.
Figure 3: Planulina merax 141, Sta. 52, Cell 213.

Figure 4: Hanzawaia atlanticusx 122, Sat. R4, Cell 183.

Figure 5: Guttulina lacteax 176, Sta. 59, Cell 360.

Figure 6: Buccella frigida x 217, Sta. R2, Cell 185.

Figure 7: Hanzawaia concentrigax 151, Sta. 51, Cell 204, flat side view.
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Appendix 1: Specles Census data of Foraminitera on the Virginia Continental Shelf, Spring 1996
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Appendix 2: Species Census data of Foraminifera on the Virginia Continental Shelf, Fall 1996
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Appendix 3; Species Census data of Ostracoda on the Virginia Continental Shelf, Spring and Fall 1996
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Appendix 3: Species Census data of Ostracoda on the Virginia Continental Shelf, Spring and Fall 1596
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The Department of the Interior

As the Nations’s principal conservation agency, the Department of the Interior has
responsibility for most of our nationally owned public lands and natural resources, This
includes fostering sound use of our land and water resources, protecting our fish, wildlife,
and biological diversity, preserving the environmental and cultural values of our national
parks and historic places; and providing for the enjoyment of life through outdoor recreation.
The Department assesses our energy and mineral resources and works o ensure that their
development is in the best interests of all our people by encouraging stewardship and citizen
participation in their care. The Departiment also has a major responsibility for American
Indian reservation communities and for people who live in island territories under U.S.
Administration.

The Minerals Management Service Mission

As a bureau of the Department of the Interior, the Minerals Management Service’s (MMS)
primary responsibilities are to manage the mineral resources located on the Nations’s Outer
Continental Shelf {OCS), collect revenue from the Federal OCS and onshore federal and
Indian lands, and distribute those revenues.

Moreover, in working to mest its responsibilities, the Offshore Minerals Management
Program administers the OCS competitive leasing program and oversees the safe and
environmentally sound exploration and production of our Nation’s offshore natural gas, oil
and other mineral resources. The MMS Royalty Management Program meets ifs
responsibilities by entrusting the efficient, timely and accurate collection and distribution of
revenue from mineral leasing and production due to Indian tribes andallottees, States and the
U. 8. Treasury

the MMS strives to fulfill its responsibilities through the general guiding principles of: (1)
being responsive to the public’s concerns and interests by maintaining a dialog with all
potentially affected parties and (2) carrying out its programs with an emphasis on working to
enhanoe the quality of life for alf Americans by lending MMS assistance and expertise to
economic development and environmental protection.



	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Plate 1
	Plate 2
	Plate 3
	Plate 4
	Plate 5
	Appendix 1
	Appendix 2
	Appendix 3

